Extending Economic Life of Ogallala Aquifer with Water Conservation Policy Alternatives in the Texas Panhandle

Lal K. Almas, Bridget Guerrero West Texas A&M University

Rachna Tewari

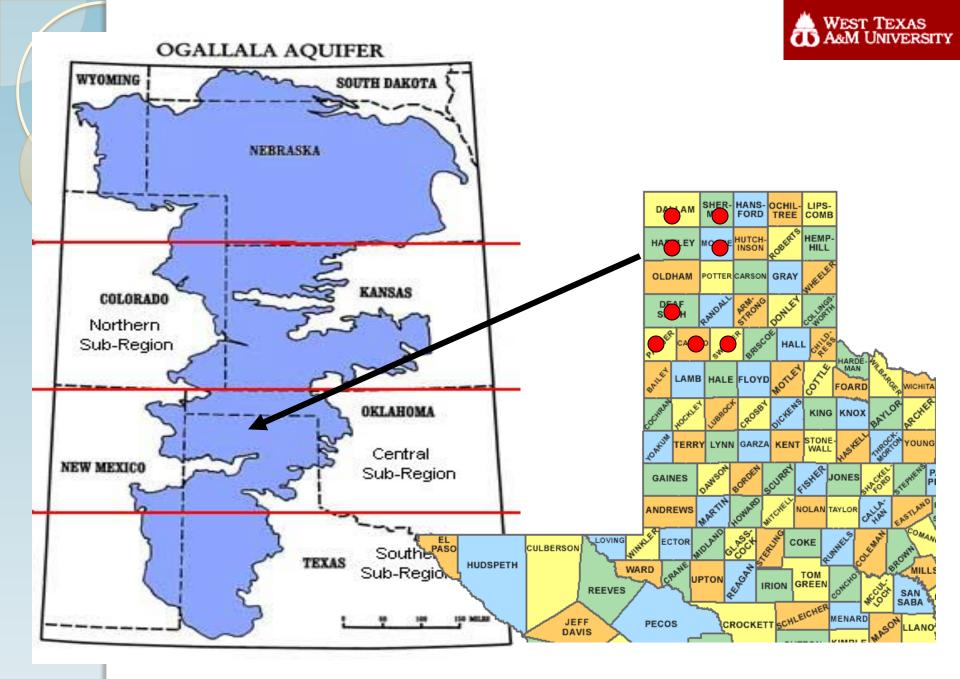
University of Tennessee

September 8, 2014

Presentation prepared for International Water Resource Economics Consortium (IWREC) hosted by the World Bank in Washington DC September 7-9, 2014

Partial funding for the research was provided by

- The Ogallala Aquifer Program, USDA-ARS, Bushland, Texas,
- Dryland Agricultural Institute, West Texas A&M University
- Texas Water Development Board



Presentation Layout

- **Agriculture and Texas Panhandle**
- Regional Economic Impact and Water
- Research Objectives and Policy Assumptions
- Results and Discussion
- Concluding Remarks

Agriculture-Texas Panhandle

- 14 million acres of Agricultural land
- > 5 million acres in crops
- •40 percent of cropland in irrigated production
- Major Crops -Corn, Cotton, Grain Sorghum, and Wheat
- Cattle Feeding Capital of the World

Crop Production

	Four County Area			anhandle aunties)	Study Area		
	Acres		(26 Counties) Acres		Study Area Comparison		
	Harvested	Production	Harvested	Production	with T	exas	
Crop	(1,000 ac.)	(1,000 bu)	(1,000 ac.)	(1,000 bu)	Panhandle		
Wheat	399.5	19,277	1,753.3	77,571.0	23%	25%	
Irrigated	190.1	12,046	474.4	28,572.0	40%	42%	
Nonirrigated	209.4	7,231	1,278.9	48,999.0	16%	15%	
Sorghum	73.9	5,799	397.9	26,301.0	19%	22%	
Irrigated	49	4,901	169.2	15,682.0	29%	31%	
Nonirrigated	24.9	898	228.7	10,619.0	11%	8%	
Corn	390.8	83,543	736.9	154,889.0	53%	54%	
Upland Cotton	24.8	58	350.6	700.3	7%	8%	
Irrigated	21.1	54	193.0	503.3	11%	11%	
Nonirrigated	3.7	4	157.6	197.0	2%	2%	

Livestock Production

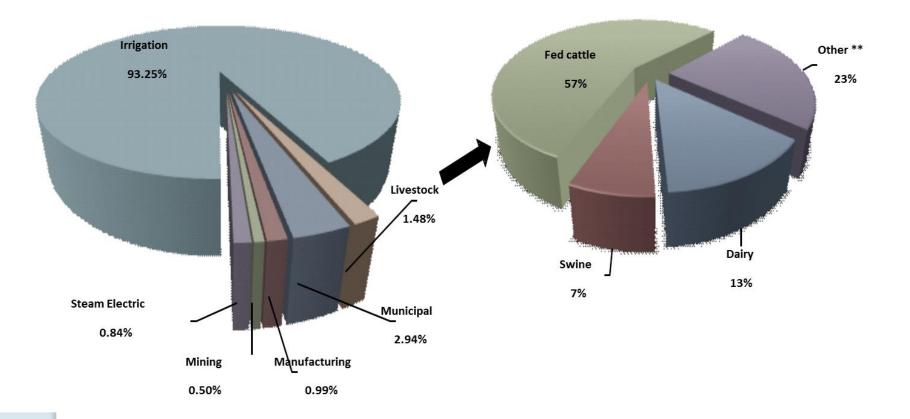
- Fed Cattle Heads
- Dairy Cows
- Swine
- Feed Demand
- Feed Supply
- Feed Imported

- 4.90 million0.10 million
- 1.07 million

470 million bushels180 million bushels290 million bushels

Water Imported in the form of feed grains
6 million acre-feet (1 acre-feet = 325,856 gallons)

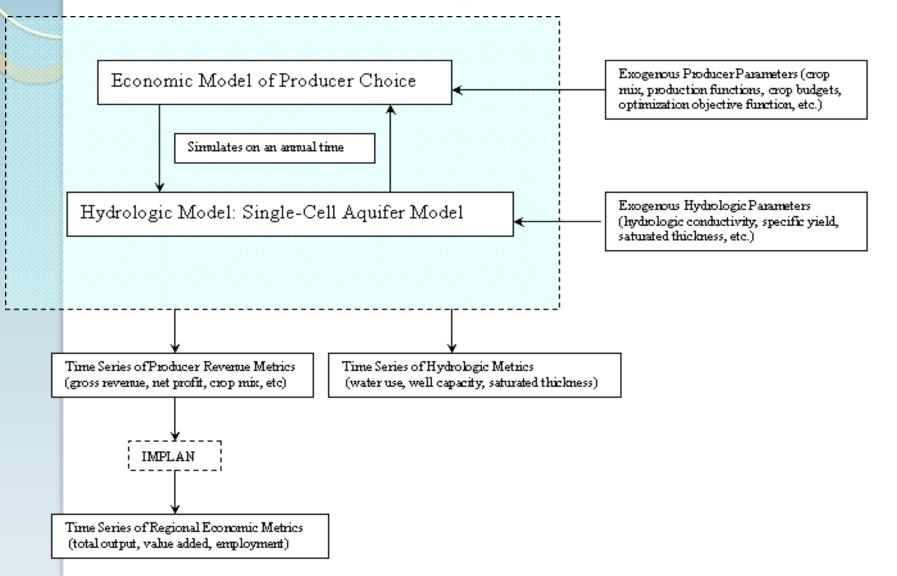
Regional Economic Impact


- > 25 % of all cash receipts for crops and livestock in Texas
- \$5.8 billion in value of agriculture
- \$6.9 billion regional economic impact
- \$9.5 billion state economic impact
- 53,264 jobs with \$1.1 billion in payroll

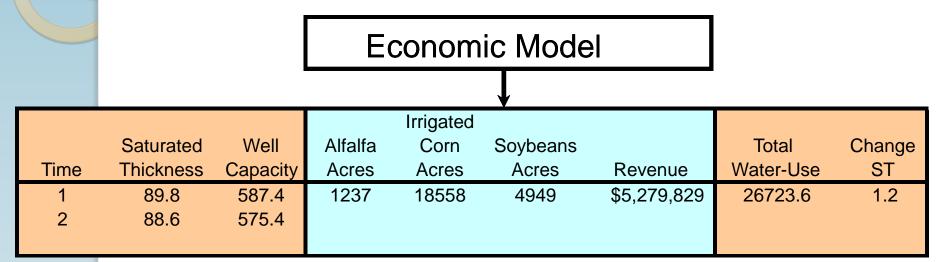
Water Use by Sector

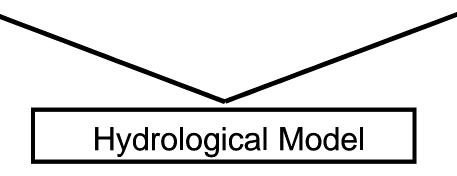
Water Use by Sector

Livestock Water Use


Objectives of Policy Development

To extend the life of the aquifer to maintain the economic viability for future generations.


- To assess the potential impacts in the region from implementing alternative water conservation strategies.
- Five policies compared to the baseline
- Economic dynamic optimization models developed to estimate changes in the aquifer, irrigated acreage and net farm income
- Socioeconomic models utilized to evaluate impacts on the regional economy



How Do We Model? (Economic Dynamic Optimization Models)

How Do We Model? (Economic Dynamic Optimization Models)

Conceptual Framework Objective function

60 $Max NPV = \sum NR_{t} (1 + r)^{-t}$ t=1 $NR_{t} = \sum_{i} \sum_{k} \Omega_{ikt} \{ P_{i} Y_{ikt} [WA_{ikt}, (WP_{ikt})] - C_{ik} (WP_{ikt}, X_{t}, ST_{t}) \}$ Constraints

- $ST_{t+1} = ST_t [(\Sigma i \Sigma_k \Omega_{ikt} * WP_{ikt}) ARR] PIA/SY,$
- $X_{t+1} = X_t + [(\Sigma_i \Sigma_k \Omega_{ikt} * WP_{ikt}) ARR] PIA/SY,$
- $\text{GPC}_{t} = (\text{ST}_{t}/\text{IST})^{2} * (4.42*\text{WY/AW}), \text{WT}_{t} = \Sigma_{i} \Sigma_{k} \Omega_{ikt} * \text{WP}_{ikt}, \text{WT}_{t} \leq \text{GPC}_{t}$
- $(PC_{ikt} = \{[EF(X_t + 2.31*PSI)EP]/EFF\}*WP_{ikt},$
- $(\mathbf{C}_{ikt} = \mathbf{VPC}_{ik} + \mathbf{PC}_{ikt} + \mathbf{HC}_{ikt} + \mathbf{MC}_{k} + \mathbf{DP}_{k} + \mathbf{LC}_{k}$
- $\Sigma_i \Sigma_k \Omega_{ikt} \le 1$ for all t, $\Omega_{ikt} \ge (0.9) \Omega_{ik(t-1)}$, and $\Omega_{ikt} \ge 0$

Policy Assumptions

Baseline: assumes no water conserving policy is implemented

Biotechnology: assumes increased yields of 0.5% annually coupled with a 1% annual water use restriction

- **Irrigation Technology**: irrigation efficiency increases
- <u>Water Use Restriction</u>: assumes a 1% annual water use restriction
- <u>**Temporary Conversion**</u>: assumes 10% of irrigated acreage are temporarily converted to dryland
- <u>Permanent Conversion (A)</u>: assumes 10% of irrigated acreage are permanently converted to dryland. During the enrollment period dryland production is not allowed
- <u>Permanent Conversion (B)</u>: assumes 10% of irrigated acreage are permanently converted to dryland. During the enrollment period dryland production is allowed

Results: Change in Average Saturated Thickness for the Region

Policy Scenario:	Year 10	Year 20	Year 30	Year 40	Year 50	Year 60
Baseline	132.85	111.42	92.77	79.35	69.45	61.84
Biotechnology-	136.65	121.04	107.26	95.31	85.20	76.93
Change from Baseline	2.86%	8.63%	15.62%	20.11%	22.67%	24.39%
Irrigation Technology-	136.00	117.90	99.85	84.52	73.34	64.87
Change from Baseline	2.37%	5.81%	7.63%	6.51%	5.59%	4.90%
Water Use Restriction-	136.65	121.04	107.26	95.31	85.20	76.93
Change from Baseline	2.86%	8.63%	15.62%	20.11%	22.67%	24.39%
Temporary Conversion-	135.99	117.90	99.84	84.51	73.34	64.87
Change from Baseline	2.37%	5.81%	7.63%	6.51%	5.59%	4.90%
Permanent Conversion-	135.99	117.90	99.91	84.56	73.37	64.90
Change from Baseline	2.37%	5.81%	7.70%	6.57%	5.64%	4.94%

Results: Change in Average Saturated Thickness in Each County

	Dallam		Hartley		Moore		Sherman	
Policy Scenario:		Year		Year		Year		Year
Toney Sechario.	Year 1	60	Year 1	60	Year 1	60	Year 1	60
Baseline	128.0	49.2	153.0	73.2	162.0	55.8	182.0	70.6
Biotechnology	128.0	61.5	153.0	89.9	162.0	65.7	182.0	92.7
Change from Baseline		24.9%		22.7%		17.6%		31.2%
Irrigation Technology	128.0	52.2	153.0	76.5	162.0	57.6	182.0	74.6
Change from Baseline		6.0%		4.5%		3.2%		5.6%
Water Use Restriction	128.0	61.5	153.0	89.9	162.0	65.7	182.0	92.7
Change from Baseline		24.9%		22.7%		17.6%		31.2%
Temporary Conversion	128.0	52.2	153.0	76.5	162.0	57.6	182.0	74.6
Change from Baseline		6.0%		4.5%		3.2%		5.6%
Permanent Conversion	128.0	52.2	153.0	76.5	162.0	57.7	182.0	74.6
Change from Baseline		6.0%		4.5%		3.4%		5.6%
						A WEE	TEVAS	

WEST TEXAS

Results: Irrigated Acreage as a Percent of Total Cropland Acres in the Region

Pol icy Scenario:	Year 10	Year 20	Year 30	Year 40	Year 50	Year 60
Baseline	72.10%	72.10%	62.07%	45.15%	34.46%	27.25%
Biotechnology-	71.99%	71.20%	65.03%	57.57%	49.65%	40.86%
Change from Baseline	-0.15%	-1.24%	4.77%	27.50%	44.07%	49.93%
Irrigation Technology-	69.35%	69.35%	68.04%	50.59%	37.92%	29.59%
Change from Baseline	-3.82%	-3.82%	9.62%	12.04%	10.05%	8.57%
Water Use Restriction-	66.07%	58.40%	51.20%	44.00%	36.81%	29.62%
Change from Baseline	-8.36%	-19.00%	-17.52%	-2.54%	6.82%	8.67%
Temporary Conversion-	64.89%	69.80%	69.08%	51.31%	38.48%	30.02%
Change from Baseline	-10.00%	-3.19%	11.28%	13.65%	11.65%	10.15%
Permanent Conversion-	64.89%	64.89%	64.89%	51.37%	38.51%	30.04%
Change from Baseline	-10.00%	-10.00%	4.53%	13.78%	11.75%	10.24%

Results: Average Net Present Value of Net Returns per Cropland Acre

Policy Scenario:	Dallam	Hartley	Moore	Sherman	Weighted Average
Baseline	\$3,907.96	\$4,109.79	\$5,825.06	\$4,483.07	\$4,546.47
Biotechnology-	\$9,158.70	\$9,630.70	\$12,062.27	\$9,356.41	\$9,980.33
Change from Baseline	134.36%	134.34%	107.08%	108.71%	119.52%
Irrigation Technology-	\$3,491.58	\$3,899.80	\$5,643.84	\$4,252.84	\$4,281.63
Change from Baseline	-10.65%	-5.11%	-3.11%	-5.14%	-5.83%
Water Use Restriction-	\$3,447.58	\$3,563.20	\$5,398.98	\$3,844.06	\$4,025.39
Change from Baseline	-11.78%	-13.30%	-7.31%	-14.25%	-11.46%
Temporary Conversion-	\$3,709.18	\$3,924.80	\$5,656.85	\$4,305.89	\$4,363.69
Change from Baseline	-5.09%	-4.50%	-2.89%	-3.95%	-4.02%
Permanent Conversion-	\$3,704.73	\$3,921.66	\$5,629.04	\$4,285.24	\$4,349.82
Change from Baseline	-5.20%	-4.58%	-3.37%	-4.41%	-4.33%

Results Economic Impact

	Direct	Indirect	Induced	Total
Irrigated Corn	-591,303,636	-325,966,773	-173,689,530	-1,090,959,939
Irrigated Cotton	-82,776,730	-55,526,796	-26,866,015	-165,169,542
Irrigated Sorghum	-18,217,650	-13,719,457	-4,017,557	-35,954,664
Irrigated Wheat	-177,382,041	-126,258,408	-39,349,900	-342,990,349
Total Irrigated	-869,680,057	-521,471,434	-243,923,002	-1,635,074,493
Dryland Cotton	30,066,233	22,063,384	8,804,445	60,934,063
Dryland Sorghum	104,414,310	71,043,288	34,013,797	209,471,394
Dryland Wheat	63,414,855	40,331,975	20,390,095	124,136,925
Total Dryland	197,895,398	133,438,646	63,208,338	394,542,382
Total	-671,784,659	-388,032,788	-180,714,664	-1,240,532,111

Summary

Best policy alternatives in the region focus on reducing water use, not reducing irrigated acreage

- Policy with least cost to producers is biotechnology adoption, though yields may not be attainable for some time due to the timing of development and adoption
- Other policies pose a significant financial hardship for producers and input suppliers
- Producers may be compensated for their losses to encourage water conservation
- Rural communities dependent on agriculture will feel the economic impact

Thank you for your attention

Comments and Questions?